
Tessellations
Cross-curricular mission for CodeX

Tessellations
● A tessellation is a tiling over a surface with one or

more figures such that the surface is filled with no
overlaps and no gaps.

Mission: Tessellations
For this mission you will:
● Create a one-shape tessellation
● Create a two-shape tessellation
● Create a triangle tessellation
● Discuss some math that goes into a tessellation
● Create your own tessellation

Shape #1: A brick
A tessellation can be made with a single rectangle.

● Codex uses these functions:

● x, y are the location (column, row) of the upper left corner
● width of the rectangle is how far across in pixels
● height of the rectangle is how far down in pixels

x, y width

height

Shape #1: A brick

A tessellation can be made with a single rectangle.

● Create a file named Tessellations
● Copy and paste the code for tessellations
● Run the code to make sure it works without errors
● Look at the code to see how the row of bricks is created

Shape #1: A brick
This function draws a rectangle at location (x, y)
that is 50 pixels wide & 20 pixels high.

Tessellating the brick
A tessellation is filling a surface with a shape, so we need more
than one brick.
● This loop draws one row of bricks.

Initial values for x, y and index
 (passed into parameters)
Loop counter
How many loops (bricks)
Change x by the width of the brick
Change the brick color using the
 index and the list of colors

Tessellating the brick
A tessellation is filling a surface with a shape, so we need more
than one brick.
● Calling the tessellation function:

Call the function when Button A is
pressed

Initial values of x, y and index

Tessellating the brick
● Add a second loop to get multiple rows of bricks:

For each row, use a different loop
counter and number of loops.

Watch the indenting – you have a loop
within a loop (nested loops)

For each new row, reset x to 0 and
change y by the height of the brick.

Tessellating the brick
This is good, but not very interesting.

Tessellating the brick
● We want the tessellation to look

more like actual bricks
● One row is a regular row
● The next row is offset by half the

width
● Then a regular row
● Offset row
● And so forth…

Tessellating the brick
● Use a variable to “toggle”

between regular and offset

Use a Boolean variable to toggle

You may need to change the # of loops

After each row of bricks, change the
toggle

Determine the starting value of x
depending on the toggle

Tessellating the brick
Great! You have your first tessellation!
● Review the steps
● You will be repeating them for the next tessellations

Shape #2 - A tetris shape
Have you noticed the shapes in Tetris? They fit together, kind
of like a tessellation.
● The light blue shape can be created by putting four squares – or two

bricks (rectangles) – together, with one brick offset by the width of
the brick.

Shape #2 - Skew
Look at the function for “skew”
It is very similar to “brick” but with two rectangles
● Use graph paper to determine the x and y locations for each rectangle

First rectangle:
(0, 0, 50, 20)
Second rectangle:
(25, 20, 50, 20)
Using x and y for both locations:
(x, y, 50, 20, color)
(x+25, y+20, 50, 20, color)

Shape #2 - Skew
Add to the menu

● You are working on the second tessellation
● Include a display.print() statement in the menu

Shape #2: Skew

Look at the function for tessellating the skew.

● Add a loop to draw a single row.
● It will be very similar to the brick, so you can even copy and paste

the code and change the function call.
● Try different loop numbers until you get just the right number.

Shape #2: Skew

Make the tessellation

● Add another loop to make
multiple rows

● Use a toggle variable, like the
tessell_brick() function

● After each column loop, reset x
using toggle, and change y

● NOTE: y height is 40, not 20!

Shape #2: Skew

You may notice there is gap on the
lower left of each regular row.

● To fix it, we can offset each regular
row by the width of the first rectangle

● Increase the loop count if needed

Tessellating the skew
Great! You have your second tessellation!
● Review the steps
● You will be repeating them for the next tessellations

Shape #3: Half-cross
Try another Tetris shape.
● Use graph paper to design your shape.
● Rotate the shape, as shown:

Shape #3: Half-cross
Call this Tetris shape “halfcross”.
● You can do a small or large halfcross (use two rectangles)
● The function in the program is for the larger halfcross

x, y+20, 20, 20
x+20, y, 20, 60

Shape #3: Half-cross
Draw a row of the halfcross shape.
● Look at the function for halfcross and understand the code.
● Add a display.print() statement to menu for the half cross shape.

Shape #3: Half-cross
Draw a row of halfcross shapes.
● Add a loop to create one row of shapes.
● NOTE: the x width is different than the first two shapes

Shape #3: Half-cross
Draw a row of halfcross shapes.
● You (again) notice a gap in the shapes.
● This time it is in the upper left corner
● Offset y this time

Shape #3: Half-cross
Draw a tessellation of halfcross shapes.
● Complete the tessellation by adding

the second loop and the toggle.
● Adjust the loop counts as needed until

your tessellation fills the screen without
gaps or overlaps.

Shape #4: Isosceles triangle

CodeX doesn’t have a built-in function that draws a triangle.

● Use the display.draw_line() function to draw three lines.

● x1, y1 are the location (column, row) of the first line end
● x2, y2 are the location (column, row) of the second line end
● x2 & y2 can be defined in relation to x1 & y1

(10, 20)
 (x, y)

 (50, 40)
(x+40, y+20)

Shape #4: Isosceles triangle
Use graph paper to design an isosceles triangle.

● Determine the size of your triangle
● Determine the x1, y1 and x2, y2 locations

(x+60, y)

(x+30, y+30)

(x, y) ● Your triangle can
be any size

● This program
uses the larger
triangle

Shape #4: Isosceles triangle
Create a function to draw the triangle.
● Use the information from your graph to draw three lines to

form a triangle.
● The function has been included in your starter code.
● Add a display.print() to the menu.
● Add a loop to the tessell_triangle() function to draw one row of

triangles.

Shape #4: Isosceles triangle
Create a tessellation of the triangle.
● Add another loop and toggle to create

the triangle tessellation.
● Looks good, right?
● But if you look closely, you actually have

a lot of gaps. You are only drawing
every other triangle.

● You need a flipped triangle!

Shape #4: Isosceles triangle
Add the code for a flipped triangle
● The starter code includes a starter function for a flipped triangle.
● What will be flipped?
● Instead of the y values going down (adding), they will go up

(subtracting)
● Add three lines of code to flipped() to draw a flipped triangle
● NOTE: the x values will stay the same; just change the “y + “ to

“y - “

Shape #4: Isosceles triangle
Complete the tessellation
● Every other row will need to be

flipped
● You already have a toggle variable
● Use it to determine which row of

triangles to draw

● Make adjustments here to see the triangles
● Offset by 1 pixel to see the triangles better
● Thought question: why change y only if

toggle is True, and not when False?

Tessellating the triangle
Great! You have your fourth tessellation!
● Are you ready to try your own?

Shape #5: Your own shape
Decide on a shape to tessellate.
● Use graph paper to design your shape.
● Make sure your shape is able to tessellate –

○ It needs to fill the surface without gaps or overlaps
○ Your shape could require a flip or rotation

Shape #5: Your own shape
Decide on a shape to tessellate.
● Possibilities:

○ An isosceles triangle with a straight side
○ A half cross facing a different direction
○ A different Tetris shape
○ Your own shape made from rectangles
○ Your own shape made from lines

Shape #5: Your own shape
Use graph paper to design your own tessellation shape.

Shape #5: Your own shape
Write the code.
● Add code to the my_shape() function to draw your own shape
● Add a display.print() statement to menu()
● Run the code as written to see one shape
● When it looks the way you want it to, add code to

tessell_my_shape() to draw a single row of your shape
● When the row looks like a tessellation row, complete the code by

adding another loop and toggle
● Test and debug as needed

Tessellation Extensions
Geometry emphasis:
● Scaling – use graph paper to draw the shape and then code it

on CodeX. Measure it on the shape on the Codex and calculate
the scaling. Use different types or sizes of graph paper to
demonstrate different scales of the shape and calcuate the
scaling.

Tessellation Extensions
Geometry emphasis:
● Tessellation shapes – review the requirements for a

tessellation. Have students look at several different shapes and
determine if they tessellate. If so, what would
the configuration of shapes look like?
This website gives a good explanation of the
math involved in a tessellation.

https://flexbooks.ck12.org/cbook/ck-12-middle-school-math-concepts-grade-8/section/6.16/related/lesson/tessellations-geom/#:~:text=Examples%20of%20tessellations%20are%3A%20a,Here%20are%20a%20few%20examples.

Tessellation Extensions
Geometry emphasis:
● Flip and rotate – create a tessellation that requires a flipped

shape, or a tessellation that requires a rotation of the shape.
Show the math for the flip / rotation.

● This can be done on CodeX, or with a paper model.

Tessellation Extensions
Algebra emphasis:
● Focus on the math used to create the shape on a Cartesian

graph, in relation to x and y. Use the graph to rotate or flip
the shape and show the math of how to go from one shape
to another.

● As a challenge, try writing code for a tessellation with a
flipped shape without creating a second function for flipped,
but just using math.

Tessellation Extensions
Art emphasis:
● Create a shape and use a color palette that sets a mood.

Use RGB colors to specify the colors instead of using the
built-in colors.

● Use this slide deck for more information about RGB
colors and CodeX.

https://docs.google.com/presentation/d/1Kc0cbNeg7jkExXYctWY5IQ5cgtJ6lC9f3eEU6vSU_9A/edit?usp=sharing

Tessellation Extensions
Art emphasis:
● Use two different color lists – one for the regular row and

one for the offset row.
● Options for lists:

○ One of primary colors and one of secondary colors
○ One list that has shades of one color, and the other

list has shades of a different color
○ Use only two or four colors
○ Compare a tessellation with a lot of color with a

tessellation that is black and white

